Revista Chapingo Serie Ciencias Forestales y del Ambiente
Universidad Autónoma Chapingo
Declaración de privacidad

 
 

 

 

 
Revista Chapingo Serie Ciencias Forestales y del Ambiente
Volume XXI, issue 3, September - December 2015
play_arrow
play_arrow
play_arrow

Variación familial en plántulas de Pinus leiophylla Schiede ex Schltdl. & Cham. en respuesta a la sequía: potencial hídrico y osmótico
Familial variation in Pinus leiophylla Schiede ex Schltdl. & Cham. seedlings in response to drought: water and osmotic potential

Natalia Castelán-Muñoz; Marcos Jiménez-Casas; Humberto Antonio López-Delgado; Hutziméngari Campos-García; J. Jesús Vargas-Hernández

http://dx.doi.org/10.5154/r.rchscfa.2014.10.043

Received: 03/10/2014

Accepted: 11/08/2015

Available online: 2015-09-28 / pages.295-306

 

picture_as_pdfDownload cloudxml picture_as_pdf View Online
  • descriptionAbstract

    The seedling variation in four families of Pinus leiophylla with different origins was evaluated regarding the reaction to drought, considering water potential variables (Ψa), osmotic potential variables (Ψ0), components and biomass allocation. The families of P. leiophylla are located in a seed orchard of the Colegio de Postgraduados in the State of Mexico. The study was done with the purpose of identifying the genotypes resistant to water stress. After 26 days without water, 50 % of the seedlings presented permanent decay in the apex of the stem, with Ψa = -3.35 MPa and Ψ0 = -3.23 MPa, which represented a decrease of 596 and 112 %, respectively, due to drought. The accumulation of biomass was also significantly affected (P = 0.05) in the families assessed, with the exception of the family from San Rafael. On average, the biomass of the root of the seedlings in drought was 38 % smaller than that of the seedlings under normal circumstances. The P. leiophylla families from San Juan Tetla and Santa María Atepetzingo (both from the state of Puebla) presented a weaker response to the stress imposed, whereas the family from Tlalmanalco (State of Mexico) was the most affected.

    Keyworks: Water stress, water potential, osmotic potential, biomass allocation.
  • beenhereReferences
    • Duan, B., Yin, C., & Li, C. (2005). Responses of conifers to drought stress. Chinese Journal of Applied and Environmental Biology, 11, 115–122.

    • Dvorak, W. S., Hodge, G. R., & Kietzka, J. E. (2007). Genetic variation in survival, growth, and stem form of Pinus leiophylla in Brazil and South Africa and provenances resistance to pitch canker. Southern Forest, 67, 125–135.

    • Major, J. E., & Johnson, K. H. (2001). Shoot water relations of mature black spruce families displaying a genotype x environment interaction in growth rate. III: Diurnal patterns as influenced by vapor pressure deficit and internal water status. Tree Physiology, 21, 579–587.

    • Martínez, T. T., Vargas, H. J. J., López, U. J., & Muñoz, O. A. (2002). Respuesta al déficit hídrico en Pinus leiophylla: Acumulación de biomasa, desarrollo de hojas secundarias y mortandad de plántulas. Terra, 20, 291–301.

    • Martiñón, M. R. J., Vargas H. J. J., López, U. J., Gómez, G. A., & Vaquera, H. H. (2010). Respuesta de Pinus pinceana Gordon a estrés por sequía y altas temperaturas. Revista Fitotecnia Mexicana, 33, 239–248.

    • Morales, V. M. G., Ramírez, M. C. A., Delgado, V. P., & López, U. J. (2010). Indicadores reproductivos de Pinus leiophylla Schltdl. et Cham. en la cuenca del río Angulo, Michoacán. Revista Mexicana Ciencias Forestales, 1, 31– 38.

    • Jiménez, C. M., & Zwiazek, J. J. (2014). Adventitious sprouting of Pinus leiophylla in response to salt stress. Annals of Forest Science, 71, 811–819.

    • Landis, T. D. (1989). Irrigation and water management. In T. D. Landis, R. W. Tinus, S. E. McDonald, & J. P. Barnett, (Eds.), The container tree nursery manual (vol. IV, pp. 69–118). Washington: US Department of Agriculture, Forest Service.

    • Prieto, R. J., Cornejo, O. E., Domínguez, C. P., Návar, J. J., Marmolejo, M. J., & Jiménez, P. J. (2004). Estrés hídrico en Pinus engelmannii Carr. producido en vivero. Investigación Agraria: Sistemas y Recursos Forestales, 13, 443–451.

    • Ramachandra, R. A., Viswanatha, C. K., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, 1189–1202.

    • Richardson, D. M., Rundel, P. W., Jackson, S. T., Teskey, R. O., Aronson, J., Bytnerowicz, A., & Procheş, S. (2007). Human impacts in pine forests: Past, present and future. Annual Review of Ecology and Systematics, 38, 275- 297.

    • Sanders, G. J., & Arndt, S. K. (2012). Osmotic adjustment under drought conditions. In R. Arcona (Ed.), Plant responses to drought stress: From morphological to molecular features (pp. 199–229). Berlin, Germany: Springer Berlin Heidelberg.

    • Scholander, P. F., Hammel, H. T., Bradstreet, E. D., & Hemmingsen, E. (1965). Sap pressure in vascular plants. Science, 148, 339–346.

    • Shvaleva, A. L., Silva, C. E., Breia, E., Jouve, L., Hausman, J. F., Almeida, M. H., …Chaves, M. M. (2005). Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity. Tree Physiology, 26, 239–248.

    • Sofo, A. (2011). Drought stress tolerance and photoprotection in two varieties of olive tree. Acta  agriculturae Scandinavica, 61, 11–720.

    • Statistix 8. (2005). Statistix. Data analysis software for researchers. Tallahassee, FL, USA: Analytical Software.

    • Steudle, E. (1993). Pressure probe technique: Basic principles and application to studies of water and solute relations at the cell, tissue and organ level. In J. A. C. Smith, & H. Griffiths (Eds.), Water deficits plant responses from cell to community (pp. 5–31). London: Bios Scientific Publishers Limited.

    • Su, H., Li, Y., Liu, W., & Xu, H. (2014). Changes in water use with growth in Ulmus pumila in semiarid sandy land of northern China. Trees Structure and Function, 28, 41– 52.

    • Susiluoto, S., & Berninger, F. (2007). Interactions between morphological and physiological drought responses in Eucalyptus microtheca. Silva Fennica, 41,221–229.

    • Taiz, L., & Zeiger, E. (2006). Fisiología vegetal (3a. ed.). Castelló de la Plana: Universitat Jaume I.

    • Xu, Z., Zhou, G., & Shimizu, H. (2010). Plant responses to drought and rewatering. Plant Signaling & Behavior, 5, 649–654.

    • Young, R. A., Boshier, D., & Boyle, T. (2000). Forest conservation genetics: Principles and practice. Australia: Csiro Publishing.

    • Zhu, Y. J., Li, L., & Jia, Z. Q. (2011). Research advances on drought resistance mechanism of plant species in arid zones of China. Sciences in Cold and Arid Regions, 3, 448–454.

    • Zolfaghari, F., Fayyaz, P., Nazari, M., & Valladares, F. (2013). Interactive effects of seed size and drought stress on growth and allocation of Quercus brantii Lindl. seedlings from two provenances. Turkish Journal of Agriculture and Forestry, 37, 361–368.

  • starCite article

    Castelán-Muñoz, N., Jiménez-Casas, M., López-Delgado, H. A.,  Campos-García, H., &  Vargas-Hernández, J. J. (2015).  Familial variation in Pinus leiophylla Schiede ex Schltdl. & Cham. seedlings in response to drought: water and osmotic potential. Revista Chapingo Serie Ciencias Forestales y del Ambiente, XXI(3), 295-306. http://dx.doi.org/10.5154/r.rchscfa.2014.10.043