Revista Chapingo Serie Ciencias Forestales y del Ambiente
Universidad Autónoma Chapingo
Declaración de privacidad




Revista Chapingo Serie Ciencias Forestales y del Ambiente
Volume XXI, issue 3, September - December 2015

El color del polvo urbano como indicador de contaminación por elementos potencialmente tóxicos: el caso de Ensenada, Baja California, México
The color of urban dust as an indicator of contamination by potentially toxic elements: the case of Ensenada, Baja California, Mexico

José L. Cortés; Francisco Bautista; Patricia Quintana; Daniel Aguilar; Avto Goguichaishvili

Received: 04/02/2015

Accepted: 07/07/2015

Available online: 2015-09-28 / pages.255-


picture_as_pdfDownload cloudxml picture_as_pdf View Online
  • descriptionAbstract

    Contamination by potentially toxic elements (PTE) is not periodically evaluated, given that the chemical analyses have a high cost. The ashes and combustion fumes give the ground a dark color, which could serve as a proxy indicator. In this study, a methodology was designed to prove the use of the color of urban dust as an indicator of contamination by PTE, and the most contaminated color was identified. 86 dust samples from Ensenada, Baja California were analyzed. The color of the samples was measured and the color indices (CI) were calculated using the RGB system. Nickel (Ni), Copper (Cu), Zinc (Zn), Lead (Pb), Rubidium (Rb), Vanadium (V), Strontium (Sr), and Yttrium (Y) were analyzed through x-ray fluorescence methods. The samples were grouped by color using the Munsell tables; the groups were validated with a discriminant analysis using the color indices. The multiple regressions indicated that there exists a relation between the CI and the PTE. The averages of the analyzed elements in the samples grouped by color were different (Kruskal-Wallis, P < 0.05). Gray dust contains higher concentrations of Pb, Cu, Zn and Ni. The color indices of urban dust can be considered a proxy methodology given their low cost, speed and reliability.

    Keyworks: Índices de color; índice de rojez; índice de saturación; índice hue.
  • beenhereReferences
    • Aguilar, B., Mejía, V., Goguichaishvili, A., Escobar J., Bayona G., Bautista, F., Morales, C. J., & Ihl, T. (2013a). Reconnaissance environmental magnetic study of urban soils, dust and leaves from Bogotá, Colombia. Studia Geophysica et Geodaetica, 57, 741–754. doi: 10.1007/s11200-012-0682

    • Aguilar, B., Bautista, F., Goguichaishvili, A., Quintana, P., Carvallo, C., & Battu, J. (2013b). Rock-magnetic properties of topsoils and urban dust from Morelia (>800,000 inhabitants), México: Implications for anthropegenic pollution monitoring in mediumsize cities. Geofisica Internacional, 52(2), 121–133. Obtenido de

    • Aguilar, B., Bautista, F., Goguitchaichvili, A., & Morton, O. (2011). Magnetic monitoring of top soils of Merida (Southern Mexico). Studia Geophysica et. Geodaetica,55(2), 377–388. doi: 10.1007/s11200-011-0021-6  

    • Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. California, USA: Sage. Bautista, F., Cejudo-Ruiz, R., Aguilar-Reyes, B., & Gogichaishvili, A. (2014). El potencial del magnetismo en la clasificación de suelos: Una revisión. Boletín de la Sociedad Geológica Mexicana, 66(2), 365–376. Obtenido de

    • Beckhoff, B., Kanngießer, B., Langhoff, N., Wedell, R., & Wolff, H. (2007). Handbook of practical X-ray f luorescence analysis. Berlin, Germany: Springer.Brooks, F. A. (1952). Atmospheric radiation and its reflection from the ground. Journal of Meteorology, 9(1), 41–52.doi: 10.1175/1520-0469(1952)009<0041:ARAIRF>2.0.CO;2  

    • Dobos, R. R., Ciolkosz, E. J., & Waltman, W. J. (1990). The effect of organic carbon, temperature, time, and redox conditions on soil color. Soil Science, 150(2), 506–512. Domínguez, S. J. M., Román, G. A. D., Prieto, G. F., & Acevedo, S. O. (2012). Sistema de notación Munsell y CIELab como herramienta para evaluación de color en suelos. Revista mexicana de ciencias agrícolas, 3(1),141–155. Obtenido de

    • Guagliardi, I., Cicchella, D., & De Rosa, R. (2012). A geostatistical approach to assess concentration and spatial distribution of heavy metals in urban soils. Water, Air, & Soil Pollution, 223(9), 5983–5998. doi:10.1007/s11270-012-1333-z

    • Ihl, T., Bautista, F., Cejudo, R., Delgado, C., Quintana, P., Aguilar, D., & Goguitchaichvili, A. (2015). Concentration of toxic elements in topsoils of the metropolitan area of México City: A spatial analysis usiong ordinari Kriging and indicator Kriging. Revista Internacional de Contaminacion Ambiental, 31(1), 47–62. Obtenido de

    •   IUSS Working Group WRB (2014). World reference base for soil resources. Rome: FAO. Kojima, M. (1958). Relationship between size of soil particles and soil colors. Soil and Plant Food, 3(4), 204. Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621. doi: 10.2307/2280779  

    • Kumaravel, V., Sangode, S. J., Siva, N., & Kumar, R. (2010). Interrelation of magnetic susceptibility, soil color and elemental mobility in the Pliocene–Pleistocene Siwalik paleosol sequences of the NW Himalaya, India. Geoderma, 154(3), 267–280. doi: 10.1016/j.geoderma.2009.10.013  

    • Leirena-Alcocer, J. L., & Bautista, F. (2014). Patrones de asociación entre la cobertura vegetal y la calidad del suelo en el matorral costero de la reserva Ría Lagartos, Yucatán. CienciaUAT, 8(2), 44–53. Obtenido de

    • Levin, N., Ben-Dor, E., & Singer, A. (2005). A digital camera as a tool to measure color indices and related properties of sandy soils in semi-arid environments. International Journal of Remote Sensing, 26(24), 5475–5492. doi: 10.1080/01431160500099444

    • Lévy, J., Varela, J., Calvo, A., & Rodríguez, M. (2003). Análisis multivariado para las ciencias sociales. Madrid, España: Pearson educación. Lozano, R., & Bernal, J. P. (2005). Characterization of a new set of eight geochemical reference materials for XRF major and trace element analysis. Revista Mexicana de Ciencias Geológicas, 22(3), 329–344. Obtenido de

    • Madeira, J., Bedidi, A., Cervelle, B., Pouget, M., & Flay, N. (1997). Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: The application of a Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil. International Journal of Remote Sensing, 18(13), 2835–2852. doi: 10.1080/014311697217369

    • Matthias, A. D., Fimbres, A., Sano, E. E., Post, D. F., Accioly, L., Batchily, A. K., & Ferreira, L. G. (2000). Surface roughness effects on soil albedo. Soil Science Society of America Journal, 64(3), 1035–1041. doi: 10.2136/sssaj2000.6431035x

    •   Munsell Color. (2000). Munsell soil color charts. Revised washable edition. MI, USA: GretagMacbeth Sabath, D. E., & Osorio, L. R. (2012). Medio ambiente y riñón: Nefrotoxicidad por metales pesados. Nefrología: Publicación oficial de la Sociedad Española de Nefrología, 32(3), 279–286. doi: 10.3265/Nefrologia.pre2012.Jan.10928

    • Sánchez-Marañón, M., Delgado, G., Delgado, R., Pérez, M. M., & Melgosa, M. (1995). Spectroradiometric and visual color measurements of disturbed and undisturbed soil samples. Soil science, 160(4), 291–303. 

    • Schulze, D. G., Nagel, L. L., van Scoyoc, G. E., Henderson, T. L., Baumgardner, M. F., & Stott, D. E. (1993). Significance of organic matter in determining soil color. In J. M. 266 The color of dust as a contamination indicator Revista Chapingo Serie Ciencias Forestales y del Ambiente | Vol. XXI, núm. 3, septiembre-diciembre 2015. Bigham, & E. J. Ciolkosz (Eds.), Soil color (pp. 71–90, vol. 31). Madison, WI, USA: Soil Science Society of America. doi: 10.2136/sssaspecpub31.c4

    •   Schwertmann, U. (1993). Relations between iron oxides, soil color, and soil formation. In J. M. Bigham, & E. J. Ciolkosz (Eds.), Soil color (pp. 51–69). Madison, WI, USA: Soil Science Society of America. doi: 10.2136/sssaspecpub31.c4

    •   Statgraphics (1992). Statgraphics plus, version 5.1. Reference Manual, Manugistics. Rockville, MD: Statpoint Technologies, Inc. Viscarra, R. R. A., Fouad, Y., & Walter, C. (2008). Using a digital camera to measure soil organic carbon and iron contents. Biosystems Engineering, 100(2), 149–159.doi: 10.1016/j.biosystemseng.2008.02.007

    • Wang, B., Xia, D., Yu, Y., Jia, J., & Xu, S. (2014). Detection and differentiation of pollution in urban surface soils using magnetic properties in arid and semi-arid regions of northwestern China. Environmental Pollution, 184, 335–346. doi: 10.1016/j.envpol.2013.08.024  

  • starCite article

    Cortés, J. L.,  Bautista, F., Quintana, P., Aguilar, D., &  Goguichaishvili, A. (2015).  The color of urban dust as an indicator of contamination by potentially toxic elements: the case of Ensenada, Baja California, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, XXI(3), 255-.