Revista Chapingo Serie Ciencias Forestales y del Ambiente
Universidad Autónoma Chapingo
Declaración de privacidad

 
 

 

 

 
Revista Chapingo Serie Ciencias Forestales y del Ambiente
Volume XXI, issue 1, January - April 2015
play_arrow
play_arrow
play_arrow

Modelo compatible de altura dominante - índice de sitio para táscate (Juniperus deppeana Steud.)
Compatible dominant height - site indexmodel for juniper (Juniperus deppeana Steud.)

Antonio Rodríguez-Carrillo; Francisco Cruz-Cobos; Benedicto Vargas-Larreta; Francisco J. Hernández

http://dx.doi.org/10.5154/r.rchscfa.2014.09.041

Received: 2014-09-22

Accepted: 2015-02-26

Available online: 2015-04-08 / pages.97-108

 

picture_as_pdfDownload cloudxml picture_as_pdf View Online
  • descriptionAbstract

    The aim of this study was to determine the site quality of juniper (Juniperus deppeana Steud.) in the San Dimas region of the state of Durango, Mexico, using the site index method. The database comes from stem analysis of 43 trees felled in harvesting activities. The Chapman-Richards and Schumacher models, by means of the algebraic difference and generalized algebraic difference approaches, were tested to determine the site index; in addition, the error structure was modeled with a second-order autoregressive model to remedy the dependency of existing longitudinal errors. The results showed that the Chapman-Richards model in generalized algebraic difference form provided the best fit according to the adjusted coefficient of determination (R2 adj = 0.98) and root mean square error (RMSE = 0.46 m). Plotting of the quality curves generated with this model, superimposed on the observed heights, corroborated the goodness of fit of the model selected. The equation obtained with the generalized algebraic difference approach directly estimates the dominant height and site index at any height and base age.

    Keyworks: Algebraic difference approach, generalized algebraic difference approach, Chapman-Richards.
  • beenhereReferences
    • Alder, D. E. (1980). Estimación del volumen forestal y predicción del rendimiento, con referencia especial a los trópicos. Roma, Italia: FAO.

    • Avery, T. E., & Burkhart, H. E. (2002). Forest measurement (5th ed.). New York, USA: McGraw-Hill.

    • Bailey, R. L., & Clutter, J. L. (1974). Base-age invariant polymorphic site curves. Forest Science, 20, 155–159. 

    • Carmean, W. H. (1972). Site index curves for upland oaks in the Central States. Forest Science, 18, 109–120. 

    • Castillo, L. A., Vargas-Larreta, E., Corral, R. J. J., Nájera, L. J. A., Cruz, C. F., & Hernández, F. J. (2013). Modelo compatible altura-índice de sitio para cuatro especies de pino en Santiago Papasquiaro, Durango. Revista Mexicana de Ciencias Forestales, 4(18), 86–103. 

    • Cieszewski, C. J. (2001). Three methods of deriving advanced dynamic site equations demonstrated on inland Douglas-fir site curves. Canadian Journal of Forest Research, 31, 165–173. 

    • Cieszewski, C. J. (2002). Comparing fixed- and variable-base-age site equations having single versus multiple asymptotes. Forest Science, 48, 7–23. 

    • Cieszewski, C. J. (2003). Developing a well-behaved dynamic site equation using a modified Hossfeld IV function Y3 = (axm)/(c + xm-1), a simplified mixed-model and scant subalpine fir data. Forest Science, 49, 539–554.  

    • Cieszewski, C. J., & Bailey, R. L. (2000). Generalized algebraic difference approach: Theory based derivation of dynamic site equations with polymorphism and variable asymptotes. Forest Science, 46, 116–126. 

    • Diéguez, A. U., Álvarez, G. J., Barrio, A. M., & Rojo, A. A. (2005). Site quality equations for Pinus sylvestris L. plantations in Galicia (north-west Spain). Annals of Forest Science, 62, 143–152. 

    • Diéguez-Aranda, U., Burkhart, H. E., & Amateis, R. L. (2006). Dynamic site model for Loblolly pine (Pinus taeda L.) plantations in the United States. Forest Science, 52(3), 262–272.

    • Goelz, J. C., & Burk, T. E. (1992). Development of a well-behaved site index equation: Jack pine in north-central Ontario. Canadian Journal of Forestry Research, 22, 776–784. 

    • Ker, M. F., & Bowling, C. (1991). Polimorphic site index equations for four New Brunswick softwood species. Canadian Journal of Forestry Research, 21, 728–732.

    • Newberry, J. D. (1991). A note on Carmean’s estimate of height from stem analysis data. Forest Science, 37(1), 368–369. 

    • Payandeh, B., & Wang, Y. (1994). Relative accuracy of a new base-age invariant site index model. Forest Science, 40(2), 341–348.

    • Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290–301. 

    • Ryan, T. P. (1997). Modern regression methods. New York, USA: Jonh Wiley and Sons, Inc. 

    • Statistical Analysis System (SAS Institute). (2004). SAS/ETS User ́s Guide, Version 9.1. Cary, NC, USA: Author.

    • Skovsgaard, J. P., & Vanclay, J. K. (2008). Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands. Forestry, 81(1), 13–31. 

    • Soto, R. J. (2009). Estudio regional forestal UMAFOR, núm. 1006, “San Dimas”. 

    • Tait, D. E., Cieszewski, C. J., & Bella, I. E. (1988). The stand dynamics of lodge pole pine. Canadian Journal of Forestry Research, 18, 1255–1260. 

    • Torres-Rojo J. M. (2001). Curvas de índice de sitio de forma y escala variables en investigación forestal. Agrociencia, 35, 87–98. 

    • Vargas-Larreta, B., Álvarez-González, J. G., Corral-Rivas, J. J., & Aguirre-Calderón, O. (2010). Construcción de curvas dinámicas de índice de sitio para Pinus cooperi Blanco. El Salto P. N. Durango. Revista Fitotecnia Mexicana, 33(4), 343–351.

    • Zimmerman, D. L., & Núñez, A. V. (2001). Parametric modelling of growth curve data: An overview (with discussion). Test, 10, 1–73. 

  • starCite article

    Rodríguez-Carrillo, A., Cruz-Cobos, F., Vargas-Larreta, B., &  Hernández, F. J. (2015).  Compatible dominant height - site indexmodel for juniper (Juniperus deppeana Steud.). Revista Chapingo Serie Ciencias Forestales y del Ambiente, XXI(1), 97-108. http://dx.doi.org/10.5154/r.rchscfa.2014.09.041