Revista Chapingo Serie Ciencias Forestales y del Ambiente
Universidad Autónoma Chapingo
Declaración de privacidad




Volume XX, issue 3, - 2014

Concentración de carbono en Pinus cembroides Zucc: fuente potencial de mitigación delcalentamiento global
Concentration of carbon in Pinus cembroides Zucc: mitigation potential source of global warming

Marín Pompa-García; José I. Yerena-Yamallel

Received: 2013-04-09

Accepted: 2014-09-06

Available online: 2014-11-12 / pages.169 - 175


file_downloadDownload open_in_newExport citation cloudxml picture_as_pdf View Online
  • descriptionAbstract

    Pinus cembroides Zucc forests has usually been segregated from commercial logging given their woody disadvantages. However, this species plays an important role in the biodiversity of Mexico. The aim of the present study was to determine the concentration of carbon (C) in the main compartments of P. cembroides: root, bark, stem, branches, buds and leaves. The total C concentration expressed as percentage of biomass was determined with the Solids TOC Analyzer equipment. The results were analyzed in a completely randomized design and Tukey’s comparison of means. The analysis of variance evidenced that C concentration varied among components (P < 0.05); the bud had the highest value (57.1 %), while stem and branches recorded the lowest values (47.7 and 47.8 %, respectively). Our results contribute to improving C estimates for this species and provide important information to determine whether P. cembroides forests can be considered as a possible source with mitigation potential against climate change and thus use it in a C sequestration program.

    Keyworks: Carbon storage, climate change, TOC Analyzer, Chihuahua.

  • beenhereReferences
    • Acosta-Mireles, M., Carrillo-Anzures, F., & Díaz-Lavariega, M. (2009). Determinación del carbono total en bosques mixtos de Pinus patula Schl. et Cham. TERRA Lationamericana, 27(2), 105–114.

    • Avendaño, D., Acosta, M., Carrillo, F., & Etchevers, J. (2009). Estimación de biomasa y carbono en un bosque de Abies religiosa. Fitotecnia Mexicana, 32(3), 233–238.

    • Bert, D., & Danjon, F. (2006). Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). Forest Ecology Management, 222, 279–295.

    • Casanova-Lugo, F., Petit-Aldana, J., & Solorio-Sánchez, J. (2011). Los sistemas agroforestales como alternativa a la captura de carbono en el trópico mexicano. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 17(1), 133–143.

    • Dhillon, R. S., & Von Wuehlisch, G. (2013). Mitigation of global warming through renewable biomass. Biomass Bioenergy, 48, 75–89.

    • Fonseca, W., Alice, F. E., & Rey-Benayas, J. M. (2012). Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. New Forest, 43, 197–211.

    • Intergovernmental Panel on Climate Change (IPCC). (2006). Forest lands. Guidelines for national greenhouse gas inventories. Hayama, Japan: IPCC-Institute for Global Environmental Strategies (IGES).

    • Karlik, J. F., & Chojnacky, D. C. (2013). Biomass and carbon data from blue oaks in a California oak savanna. Biomass and Bioenergy, 62, 228–232.

    • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627.

    • Lamlom, S. H., & Savidge, R. A. (2003). A reassessment of carbon content in wood: Variation within and between 41 North American species. Biomass and Bioenergy, 25(4), 381–388.

    • Macchioni, F., Cioni, P. L., Flamini, G., Morelli, I., Maccioni, S., & Ansaldi, M. (2003). Chemical composition of essential oils from needles, branches and cones of Pinus pinea, P. halepensis, P. pinaster and P. nigra from central Italy. Flavour and Fragrance Journal, 18, 139–143.

    • McClaran, M. P., Mcmurtry, C. R., & Archer, S. R. (2013). A tool for estimating impacts of woody encroachment in arid grasslands: Allometric equations for biomass, carbon and nitrogen content in Prosopis velutina. Journal of Arid Environments, 88, 39–42.

    • Monreal, C. M., Etchevers, B. J., Acosta, M., Hidalgo, C., Padilla, J. R., López, M., …Velásquez, A. (2005). A method for measuring above- and below-ground C reservas in hillside landscapes. Canadian Journal of Soil Science, 85, 523–530.

    • Navarro, M. M., Róger, R. Ch., Ortiz, E., & Vilchez, B. (2013). Successional variation in carbon content and wood specific gravity of four tropical tree species. Bosque, 34(1), 33–43.

    • Niinemets, Ü., Ellsworth, D. S., Lukjanova, A., & Tobias, M. (2001). Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiology, 21, 1231–1244.

    • Pacala, S., & Socolow, R. (2004). Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305, 968–72.

    • Pacheco, E. F. C., Aldrete, A., Gómez, G. A., Fierros, G. A. M., Cetina, A. V. M., & Vaquera, H. H. (2007). Almacenamiento de carbono en la biomasa aérea de una plantación joven de Pinus greggii Engelm. Revista Fitotecnia Mexicana, 30(3), 251–254.

    • Pompa-García, M., Solís-Moreno, R., Rodríguez-Téllez, E., PinedoÁlvarez, A., Ávila-Flores, D. Y. Hernández-Díaz, J. C., & Velasco- Bautista, E. (2010). Viewshed analysis for improving the effectiveness of watch towers in the North of Mexico. The Open Forest Science Journal, 3, 17–22.

    • Rodríguez-Laguna, R., Jiménez-Pérez, J., Aguirre-Calderón, O., Treviño-Garza, E., & Razo-Zárate, R. (2009). Estimación de carbono almacenado en el bosque de pino-encino en la reserva de la biosfera El cielo, Tamaulipas, México. Ra Ximhai, 5(3), 317–327.

    • Statistical Analysis System (SAS). (2004). SAS user’s guide statistics. Release 9.1. Cary, NC, USA: SAS Institute Inc.

    • Thomas, S. C., & Martin, A. R. (2012). Carbon content of tree tissues: A synthesis. Forests, 3, 332–352.

    • Treviño, G. E. J. (2001). Estratificación de la información en el procesamiento digital de imágenes de satélite aplicado a la cartografía de los bosques de Pinus cembroides. Investigaciones Geográficas, 44, 54–63.

    • Valentin, L., Kluczek-Turpeinen, B., Willför, S., Hemming, J., Hatakka, A., Steffen, K., & Tuomela, M. (2009). Scots pine (Pinus sylvestris) bark composition and degradation by fungi: Potential substrate for bioremediation. Bioresources Technology, 101, 2203–2209.

    • Yerena, Y. J. I., Jiménez, P. J., Aguirre C, O., & Treviño, G. E. J. (2011). Concentración de carbono en la biomasa aérea del matorral espinoso tamaulipeco. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 17(2), 283–291.

    • Zhang, Q., Wang, C., Wang, X., & Quan, X. (2009). Carbon concentration variability of 10 Chinese temperate tree species. Forest Ecology Management, 258, 722–727.

  • starCite article

    Pompa-García, M., &  Yerena-Yamallel, J. I. (2014).  Concentration of carbon in Pinus cembroides Zucc: mitigation potential source of global warming. , XX(3), 169 - 175.

Indexed in

Licencia Creative Commons

SCImago Journal & Country Rank