Revista Chapingo Serie Ciencias Forestales y del Ambiente
Universidad Autónoma Chapingo
Declaración de privacidad




Volume XIX, issue 1, - 2013


Francisco Bautista; Dorian A. Bautista-Hernández; Oscar Álvarez; María Anaya-Romero; Diego de la Rosa

Received: 2011-09-29

Accepted: 2013-01-14

Available online: / pages.81 - 90


file_downloadDownload open_in_newExport citation cloudxml picture_as_pdf View Online
  • descriptionAbstract

    The present work shows the architecture and capabilities of the software titled “Data Analysis System for monitoring regional and local climate change with agroclimatic indexes” (Moclic). The software works as: a) a database; b) a processing tool of agroclimatic data; and c) a tool for identifying local climate change trends. The advantages of using Moclic include its capacity for evaluating climate change within a graphical user interface. The software requires input data from weather stations containing the following information: station name, key number, locality and state, monthly average, minimum and maximum temperatures, monthly precipitation and the geographic coordinates of the station. Moclic can process the input data and calculate derived variables related to potential evapotranspiration and monthly and annual indexes for humidity, aridity, the growing season, precipitation concentration, erodibility, and soil leaching. Moclic software works in both English and Spanish. Finally, a case study of the Abalá station in the state of Yucatán, México is presented in order to show the applicability of Moclic at the local level. The results from the case study show the high accuracy of the Moclic for the prediction of climate change trends throughout the last 40 years, and suggest its high potential to be used in new climate scenarios.

    Keyworks: Humidity index, climatic indexes, evapotranspiration, temperature.

  • beenhereReferences
    • Arnoldus, H. M. J. (1980). An approximation of the rainfall factor in the universal soil loss equation. In M. de Boodt & D. Grabriels (Eds.), Assessment of erosion (pp. 127–132). Chichester, England: John Wiley & Sons, Inc.

    • Arkley, R. (1963). Relationships between plant growth and transpiration. Hilgardia, 34, 559–584.

    • Bautista, F., Bautista-Hernández, D., & Delgado-Carranza, C. (2009). Calibration of the equations of Hargreaves and Tornthwaite to estimate the potential evapotranspiration in semi-arid and subhumid tropical climates for regional applications. Atmósfera, 22, 331–348.

    • Carlón, T., & Mendoza, M. (2007). Análisis hidrometeorológico de las estaciones de la cuenca del Lago de Cuitzeo. Investigaciones Geográficas, 63, 56–76.

    • Carter, T. R. (2007). General guidelines on the use of scenario data for climate impact and adaptation assessment. Helsinki, Finland: Intergovernmental Panel on Climate Change, Task Group on Data and Scenario Support for Impact and Climate Assessment (IPCC-TGICA).

    • Commission of the European Communities (CEC). (1992). CORINE soil erosion risks and important land resources-in the southern regions of the European Community.

    • Conde, C., Estrada, F., Martínez, B., Sánchez O., & Gay, C. (2011). Regional climate change scenarios for México. Atmósfera, 24, 125–140.

    • De la Rosa, D., Barros, J., Mayol, F., & Moreno, J. (1996). CDMm Base de datos climáticos mensuales. Sevilla, España: Consejo Superior de Investigaciones Científicas, Instituto de Recursos Naturales y Agrobiología.

    • García-Herrera, G., Esquivel, G., Zárate, J. L., Trejo, R., Sánchez, I., & Esquivel, O. (2009). Escenarios a futuro de temperatura y precipitación pluvial bajo el efecto de un cambio climático en la región agrícola de los llanos, Durango, México. Revista Chapingo Serie Zonas Áridas, 9, 107–120.

    • Gay, C., & Estrada, F. (2010). Objective probabilities about future climate are a matter of opinion. Climate Change, 99, 27–46.

    • Gómez, J. D., Monterroso, A., Tinoco, J. A., Toledo, M. L., Conde, C., & Gay, C. (2011). Assessing current and potential patterns of 16 forest species driven by climate change scenarios in México. Atmósfera, 24, 31–52.

    • Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1, 96–99.

    • Lobo, D., Gabriels, D., Ovalles, F., Santibañez, F., Moyano, M. C., Aguilera, R.,…Urra, N. (2004). Guía metodológica para la elaboración del mapa de zonas áridas, semiáridas y subhúmedas secas de América Latina y el Caribe. Caracas, Venezuela: CAZALAC- PHI/UNESCO.

    • Monterroso, A. I., Gómez, J. D., Toledo, M. L., Tinoco, J. A., Conde, C., & Gay, C. (2011). Simulated dynamics of net primary productivity (NPP) for outdoor livestock feeding coefficients driven by climate change scenarios in México. Atmósfera, 24, 69–88.

    • Oliver, J. E. (1980). Monthly precipitation distribution: A comparative index. Professional Geographer, 32, 300–309.

    • Shahbazi, F., Jafarzadeh, A., Sarmadian, F., Neyshaboury, M., Oustan, S., Anaya-Romero, M., Lojo, M., & De la Rosa, D. (2009). Climate change impact on land capability using MicroLEIS DSS. International Agrophysics, 23(3), 277–286.

    • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94.

    • Villers, L., Arizpe, N., Orellana, R., Conde, C., & Hernández, J. (2009). Impactos del cambio climático en la floración y desarrollo del fruto del café en Veracruz, México. Interciencia, 34, 322– 329.

    • Walker, N. J., & Schulze, R. E. (2008). Climate change impacts on agro-ecosystem sustainability across three climate regions in the maize belt of South Africa. Agriculture, Ecosystems & Environment, 124, 114–124.

    • Wigley, T. M. L. (2008). MAGICC/SCENGEN 5.3: User manual (version 2).

  • starCite article

    Bautista, F., Bautista-Hernández, D. A.,  Álvarez, O., Anaya-Romero, M., &  de la Rosa, D. (2013).  SOFTWARE TO IDENTIFY CLIMATE CHANGE TRENDS AT THE LOCAL LEVEL: A STUDY CASE IN YUCATÁN, MÉXICO. , XIX(1), 81 - 90.

Indexed in

Licencia Creative Commons

SCImago Journal & Country Rank