Revista Chapingo Serie Ciencias Forestales y del Ambiente
Universidad Autónoma Chapingo
Declaración de privacidad

 
 

 

 

 
Revista Chapingo Serie Ciencias Forestales y del Ambiente
Volume XVIII, issue 2, May - August 2012
play_arrow
play_arrow
play_arrow

CRECIMIENTO Y CONTENIDO NUTRIMENTAL DE Pinus greggii Engelm. INOCULADO CON EL HONGO COMESTIBLE ECTOMICORRÍZICO Hebeloma mesophaeum (Pers.) Quél.
GROWTH AND NUTRIENT CONTENTS OF Pinus greggii Engelm. INOCULATED WITH THE EDIBLE ECTOMYCORRHIZAL MUSHROOM Hebeloma mesophaeum (Pers.) Quél.

Magdalena Martínez-Reyes; Jesús Pérez-Moreno; Luis Villarreal-Ruiz; Ronald Ferrera-Cerrato; Beatriz Xoconostle-Cázares; J. Jesús Vargas-Hernández; Mario Honrubia-García

http://dx.doi.org/10.5154/r.rchscfa.2010.11.112

Received: 2010-11-15

Accepted: 2012-05-02

Available online: / pages.183 - 192

 

picture_as_pdfDownload cloudxml picture_as_pdf View Online
  • descriptionAbstract

    Growth and macro and micronutrient contents of Pinus greggii Engelm. inoculated with the edible ectomycorrhizal mushroom Hebeloma mesophaeum (Pers.) Quél. was evaluated. The experiment consisted of two treatments: plants inoculated with H. mesophaeum and non-inoculated plants. Results showed that shoot and root dry weight, shoot height, stem diameter, and total contents of N, P, K, Ca and Mg were higher in inoculated plants than in non-inoculated plants. P and Mg contents were 6.7 and 6.9 times respectively higher in the shoot of inoculated plants in comparison to noninoculated plants. Additionally, H. mesophaeum originated a high translocation efficiency of P, K and Mg to the shoot. The percentage of mycorrhization was high (79.5 %); more than half of it being observed in the central part of the root ball in the plant containers. Therefore, inoculation with H. mesophaeum has a great potential to be used in the production of P. greggii plants under greenhouse conditions.

    Keyworks: macronutrients, pines, edible wild mushrooms, sporomes.
  • beenhereReferences
    • Agerer, R. (1994). Characterizacion of ectomycorrhiza. In J. R. Norris, D. J. Read, & A.K. Varma (Eds.), Techniques for the Study of Mycorrhiza (pp. 25‒73). London: Academic Press.

    • Allen, S. E., Grimshaw, H. M., Parkinson, J.A. & Quarmbym, C. (1997). Chemical analysis of ecological materials. Oxford, UK: Blackwell Scientific Publications

    • Alves, L., Oliveira, V. L., & Germano, N. S. F. (2010). Utilization of rocks and ectomycorrhizal fungi to promote growth of eucalypt. Brazilian Journal of Microbiology, 41, 676‒684.

    • Bandou, E., Lebailly, F., Muller, F., Dulormne, M., & Toribio, A. (2006). The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba uvifera L.) seedlings. Mycorrhiza, 16, 559‒565.

    • Boa, E. (2004). Wild edible fungi: A global overview of their use and importance to people. Rome: Food and Agriculture Organization of the United Nations. (FAO).

    • Bremner, J. M. (1965). Total nitrogen. In C. A. Black (Ed.), Methods of soil analysis (pp. 1149-1178). Madison, Wisconsin: American Society of Agronomy.

    • Christophe, C., Turpault, M., Uroz, S., Leclerc, E., Kies A., & Frey-Klett P. (2010). Laccaria bicolor S238N improves Scots pine mineral nutrition by increasing root nutrient uptake from soil minerals but does not increase mineral weathering. Plant Soil, 328, 145‒154.

    • Danell, E., & Camacho, F. J. (1997). Successful cultivation of the golden chanterelle. Nature, 385, 303.

    • Debaud, J. C., & Gay, G. (1987). In vitro fruiting under controlled conditions of the ectomycorrhizal fungus Hebeloma cylindrosporum associated with Pinus pinaster. New Phytologist, 105, 429‒436.

    • Deemy. (2008). Characterization and determination of ectomycorrhizae.

    • Domínguez, N. J. A., Planelles, R., Rodríguez, B. J. A., & Saiz de Omeñaca, J. A. (2004). Influencia de la micorrización con trufa negra (Tuber melanosporum) en el crecimiento, intercambio gaseoso y nutrición mineral de plántulas de Pinus halepensis. Investigación agraria. Sistemas y recursos forestales, 13, 317‒327.

    • Duñabeitia, M. K., Hormilla, S., García-Plazaola, J. I., Txarterina, K., Arteche, U., & Becerril, J. M. (2004). Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza, 14, 11‒18.

    • Javelle, A., Morel, M., Rodríguez-Pastrana, B. R., Botton, B., André B., Marini A. M., Brun A., & Chalot, M. (2003). Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Molecular Microbiology, 47, 411‒430

    • Jentschke, G., Brandes, B., Kuhn, A. J., Schröder, W. H., Becker, J. S., & Godbold, D. L. (2000). The mycorrhi-zal fungus Paxillus involutus transports magnesium to Norway spruce seedlings. Evidence from stable isotope labeling. Plant and Soil, 220, 243‒246.

    • Jentschke, G., Brandes, B., Kuhn, A. J., Schröder, W. H., & Godbold D. L. (2001). Interdependence of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus. New Phytologist, 149, 327‒337.

    • Kropp, B. R. (1997). Inheritance of the ability for ectomycorrhizal colonization of Pinus strobus by Laccaria bicolor. Mycologia, 89, 578‒585.

    • Louche, J., Arif, A. M., Cloutier-Hurteau, B., Sauvage, F. X., Quiquampoix, H., & Plassard, C. (2010). Effciency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiology Ecology, 73, 323‒335.

    • Parladé, J., Pera, J., & Alvarez, I. F. (1996). Inoculation of containerized Pseudotsuga menziesii and Pinus pinaster seedlings with spores of five species of ectomycorrhizal fungi. Mycorrhiza, 6, 237‒245.

    • Pérez-Moreno, J., & Read, D., J. (2000). Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytologist, 145, 301‒309.

    • Pérez-Moreno, J., Martínez-Reyes, M., Yescas-Pérez, A., Delgado-Alvarado, A., & Xoconostle-Cázares, B. (2008). Wild mushroom markets in Central Mexico and a case study at Ozumba. Economic Botany, 62, 425‒436

    • Ramírez-Herrera, C., Vargas H. J. J., & López-Upton J. (2005). Distribución y Conservación de las poblaciones naturales de Pinus greggii. Acta Botánica Mexicana, 72, 1‒16

    • Read, D. J., & Pérez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytologist, 157, 475‒492.

    • Sánchez, J. E., Pérez-Moreno, J., Mata G., Salmones, D., & Leal-Lara, H. (2012). Los hongos comestibles en México. In J. Álvarez-Sánchez, A. Alarcón, & M. P. Rodríguez-Guzmán (Eds.), Biodiversidad microbiana de México. México, D.F.: UNAM (en prensa).

    • Statistical Analysis System Institute (SAS). (1999). SAS User´s Guide, versión 8.0. Cary, N. C.: SAS Institute Inc.

    • Tibbett, M., & Sanders, F. E. (2002). Ectomycorrhizal symbiosis can enhance plan nutrition trough improved access to discrete organic nutrient patches of high resource quality. Annals of Botany, 89, 783‒789.

    • Übel, E., & Heinsdorf, D. (1997). Results of long-term K and Mg fertilizer experiments in afforestation. Forest Ecology Management, 91, 47‒52.

    • Wang, Y., & Hall, I. R. (2004). Edible ectomycorrhizal mushrooms: Challenges and achievements. Canadian Journal

  • starCite article

    Martínez-Reyes, M., Pérez-Moreno, J., Villarreal-Ruiz, L., Ferrera-Cerrato, R., Xoconostle-Cázares, B., Vargas-Hernández, J. J.,  &  Honrubia-García, M. (2012).  GROWTH AND NUTRIENT CONTENTS OF Pinus greggii Engelm. INOCULATED WITH THE EDIBLE ECTOMYCORRHIZAL MUSHROOM Hebeloma mesophaeum (Pers.) Quél. . Revista Chapingo Serie Ciencias Forestales y del Ambiente, XVIII(2), 183 - 192. http://dx.doi.org/10.5154/r.rchscfa.2010.11.112